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Abstract: We present a fully integrated InGaAs/InP negative feedback avalanche diode (NFAD)
based free-running single-photon detector (SPD) designed for accurate lidar applications. A free-
piston Stirling cooler is used to cool down the NFAD with a large temperature range, and an
active hold-off circuit implemented in a field programmable gate array is applied to further
suppress the afterpulsing contribution. The key parameters of the free-running SPD including
photon detection efficiency (PDE), dark count rate (DCR), afterpulse probability, and maximum
count rate (MCR) are dedicatedly optimized for lidar application in practice. We then perform
a field experiment using a Mie lidar system with 20 kHz pulse repetition frequency to compare
the performance between the free-running InGaAs/InP SPD and a commercial superconducting
nanowire single-photon detector (SNSPD). Our detector exhibits good performance with 1.6
Mcps MCR (0.6 µs hold-off time), 10% PDE, 950 cps DCR, and 18% afterpulse probability
over 50 µs period. Such performance is worse than the SNSPD with 60% PDE and 300 cps
DCR. However, after performing a specific algorithm that we have developed for afterpulse and
count rate corrections, the lidar system performance in terms of range-corrected signal (Pr2)
distribution using our SPD agrees very well with the result using the SNSPD, with only a relative
error of ∼2%. Due to the advantages of low-cost and small size of InGaAs/InP NFADs, such
detector provides a practical solution for accurate lidar applications.

© 2017 Optical Society of America
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1. Introduction

Aerosol lidars play an important role in many fields, such as atmosphere environment man-

agement, agricultural meteorology, hydrological cycle and radiation budget. Compared with

ultraviolet (UV) and Visible systems, 1.5 µm aerosol lidars offer several advantages, including

higher maximum permissible exposure to human eyes, lower atmospheric attenuation, minor

disturbance from Rayleigh scattering, and weaker sky radiance. For instance, when using a

multifrequency lidar for retrieving the spatial distribution of respirable fractions of aerosol in

the lower atmosphere, 1.5 µm aerosol lidars provide more reliable concentration estimates of

coarse aerosol particles [1].

Using single-photon detectors (SPDs) at 1.5 µm can greatly improve the performance of

aerosol lidars. Currently the main techniques for single-photon detection at the telecom wave-

length [2] include superconducting nanowire single-photon detectors (SNSPDs), up-conversion

SPDs and InGaAs/InP single-photon avalanche diodes (SPADs). SNSPDs exhibit excellent per-

formance of high photon detection efficiency (PDE), low dark count rate (DCR) and low timing

jitter [3–5], however, the requirement of cryogenic conditions limits the use for practical appli-

cations. Up-conversion SPDs exhibit moderate performance, and recently have been used for

lidar experiments [6–9]. Compared with the above detectors, InGaAs/InP SPADs have relatively

poor performance, however, such detectors are widely used in practical applications due to their

advantages of small size and low cost [10, 11]. The key parameters of InGaAs/InP SPADs, i.e.,

PDE, DCR, afterpulse probability and maximum count rate (MCR), influence each other, so that

these parameters should be compromised and optimized according to the requirements of appli-

cations. Apart from SPAD device, the quenching electronics is the crucial part for a SPAD [11].

InGaAs/InP SPADs are often operated either in gating mode or in free-running mode, which are

suited for synchronous and asynchronous single-photon detections, respectively.

Gating mode can effectively reduce DCR of InGaAs/InP SPADs, and gating frequencies have

been increased from a few MHz in the early stage to the regime of GHz [11]. High-frequency

gating techniques, including sine wave gating [12–19] and self-differencing [20,21], can highly

shorten avalanche duration time and thus significantly suppress the afterpulsing effect, which

greatly helps to increase count rates of InGaAs/InP SPADs. However, gating mode is not well

suited for remote sensing applications due to the limit of small duty cycle for asynchronous

single-photon detection [22, 23]. Even using high-frequency gating technique, the duty cycle

can reach around 20%, which still results in pretty low effective detection efficiency [11].

For lidar and remote sensing applications [24–27], the most practical solution is using free-

running InGaAs/InP SPADs. So far several techniques have been used to implement free-running

operations. First, passive quenching is certainly a common approach for free-running mode.

Rarity et al. demonstrated a passively quenched InGaAs/InP SPD in 2000 [28]. The important

technical issue to be settled in such detectors is to suppress afterpulsing effect [11]. Using

long recovery time can reduce the afterpulse probability. However, the performance of count

rate is severely limited. Warburton et al. presented a solution for free-running operation through

lowering excess bias and increasing temperature [29]. The Virginia groupdemonstrated a scheme

called passive quenching and active reset (PQAR) [30,31], combining the advantages of parasitic

capacitance minimization by chip-to-chip wire bonding and fast electronic switch to swiftly reset

the bias voltage after the hold-off time. Second, active quenching can also be used for free-running
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Fig. 1. Experimental setup of aerosol lidar using free-running InGaAs/InP single-photon

detector. DFB: distributed feedback diode; EOM: electro-optic modulator; EDFA: erbium-

doped fiber amplifier; LMAF: large-mode-area fiber; FBG: fiber bragg grating; NFAD:

negative feedback avalanche diode; SNSPD: superconducting nanowire single-photon de-

tector; MCS: multi-channel scaler.

mode given a short quenching time. The Geneva group demonstrated a practical free-running

detector using integrated circuit of active quenching, in which both the parasitic capacitance

and the propagation delay of the quenching circuit were minimized [32, 33]. Third, new SPAD

devices called negative feedback avalanche diodes (NFADs) provide a simple and practical

solution for free-running mode [34–36]. NFADs monolithically integrate thin film resisters (∼

900 KΩ) inside the semiconductor structure of devices for passive quenching operation, which

can fundamentally solve the problem of parasitic capacitance compared with the PQAR scheme.

Yan et al. implemented a NFAD based free-running detector with 10% PDE and 100 cps DCR at

193 K [37]. Korzh et al. demonstrated a similar detector and optimized the operation conditions

to further reduce DCR down to 1 cps at 10% PDE [38]. However, these two free-running SPDs

used pretty long hold-off time to further suppress the afterpulse probability, which results in low

MCR and even signal distortion in lidar applications.

In this paper, we present a fully integrated free-running SPD based on InGaAs/InP NFAD

(Princeton Lightwave) with 1.6 Mcps MCR, 10% PDE and 950 cps DCR. We then develop

a specific algorithm for afterpulse correction and count rate correction for lidar applications.

After the corrections, the lidar system performance in terms of range-corrected signal (Pr2)

distribution using such detector is considerably comparable to that of using a commercial

SNSPD with only a relative error of ∼2%.

2. Mie lidar at 1.5 µm

The experimental setup of 1.5 µm Mie lidar using free-running InGaAs/InP SPD is shown in

Fig. 1. The whole laser system of lidar utilizes master-oscillator power-amplifier architecture. A

continuous wave (CW) laser from a distributed feedback diode (DFB, 1548.1 nm) is chopped

into a pulse train using an electro-optic modulator (EOM, Photline, MXER-LN-10) with high

extinction ratio (35 dB). The EOM is driven by a pulse generator, which controls the shape

and pulse repetition frequency (PRF) of the laser. In the experiment, the PRF of the pulses is

set to 20 kHz, which indicates the maximum unambiguous detection range is ∼7.5 km. The

weak laser pulses are fed into an erbium-doped fiber amplifier (EDFA, Keyopsys, PEFA-EOLA),

which emits a pulse train with 110 µJ pulse energy and 200 ns pulse width. A large-mode-area

fiber with numerical aperture of 0.08 is used to increase the threshold of stimulated Brillouin

scattering and to avoid self-saturation of amplified spontaneous emission (ASE). The laser is

then collimated and sent to the atmosphere.

The backscattering signal from the atmosphere is collected into a single-mode fiber using a
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Fig. 2. Design diagram (a) and photo (b) of the free-running InGaAs/InP single-photon

detector system. LNA: low-noise amplifier; OPA: operational amplifier; FPGA: field-

programmable gate array; FPSC: free-piston Stirling cooler.

pigtailed coupler. The background noise is filtered out by inserting a fiber Bragg grating (FBG,

Advanced Optics Solution GmbH) with a ultra-narrow bandwidth of 6 pm and an insertion loss

less than 3 dB. The backscattering signal is detected by an InGaAs/InP NFAD based free-running

SPD. The detection signals of the received photons are recorded on a multi-channel scaler (FAST

ComTec, MCS6A) and then transmitted to a computer. In order to optimize the performance

of free-running InGaAs/InP SPD for lidar applications, a commercial superconductor nanowire

single photon detector (SNSPD, Single Quantum, Eos 210 CS) is used to detect the atmospheric

backscattering signal simultaneously for comparison. The SNSPD exhibits pretty good calibra-

tion performance with 60% PDE, 300 cps DCR, low timing jitter and high MCR. Therefore,

such detector is well suited to be used as a reference in the experiment.

3. Free-running InGaAs/InP single-photon detector

Backscattering signal from a lidar decays very fast along detection range so that the count rate of

signal has a large dynamic range. Therefore, a SPD with high MCR is required to avoid detector

saturation, particularly in the near range. The main design considerations of our free-running

InGaAs/InP detector system include moderate DCR and afterpulse performance with high MCR

and integrated module for practical use. The design diagram and photo of the detector are shown

in Figs. 2(a) and 2(b), respectively. To achieve low DCR performance, cooling down the NFAD

device is crucial. In the detector, a free-piston Stirling cooler (FPSC, SC-UE15R) is used, which

has a powerful cooling capacity and can easily cool down the NFAD to 163 K. The NFAD is

fixed on the cold side surface of FPSC and then the whole cold side is encapsulated inside a

cavity. The cavity is connected with the detector controller via a micro rectangular connector for

temperature control and micro coaxial (MCX) connectors for electronic signal transmission. A

target temperature is set by rotating a potentiometer and displayed on the detector panel. Since

the cooling power of FPSC is tuned by a direct current (DC) voltage in its driver circuit, a

proportional-integral-derivative (PID) program is developed in a field-programmable gate array

(FPGA) to regulate the voltage in real-time. In such a way, the cooling temperature that is

displayed on the detector panel in real-time can be finally stabilized at the target temperature

with an error less than 1 K.

The reverse bias voltage of NFAD is tuned by another potentiometer on the detector panel to

guarantee that the NFAD is operated in Geiger mode. Once an avalanche occurs, the original

avalanche signal is alternating current (AC) coupled to a low-noise amplifier (LNA) with a gain

of 40 dB. The amplified signal is then discriminated. The output signals of the discriminator

are sent to the FPGA for further processing. The FPGA counts the discriminated signals and

drivers the displayer on the panel, and outputs reset pulses as well. The reset LVTTL pulses are

amplified to 5 V via an operational amplifier (OPA) and then coupled to the anode of NFAD.
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Fig. 3. Experimental backscattering signal with hold-off time of 0.6 µs (a) and 2 µs (b) in

the InGaAs/InP single-photon detector. (c) Simulation illustration of the ringing effect. It is

assumed that the input intensity is a step signal from 0 to 107 photons with a rising time of

2 µs and the hold-off time of detector is 2 µs. (d) The plot of maximum relative overshoot

error as a function of hold-off time.

When the reset pulses are at HIGH level, the bias is below breakdown voltage and hence the

width of the reset pulses are exactly the hold-off time. Once the status of the reset pulses is

switched from HIGH level to LOW level, the NFAD is directly reset to the initial state. Due to

the capacitance response of NFAD, the falling edges of reset pulses produce negative derivative

signals that are superposed with avalanche signals. In order to avoid wrong detections, the output

of the discriminator is latched until 20 ns after the falling edges of reset pulses so that negative

derivative signals are ignored.

4. Optimization of parameters

Afterpulse probability is an additional parameter to be considered in lidar applications compared

with SNSPD. This parameter is related to the operation conditions of NFAD including excess

bias voltage, temperature, and hold-off time. Setting a long hold-off time can effectively reduce

aftepulse probability, which, however, considerably limits the parameter of MCR and results in

a ringing effect to the detected backscattering signal in lidar applications. Figures 3(a) and 3(b)

show the backscattering signals detected by the free-running InGaAs/InP SPD with different

settings of hold-off time. In the case of 2 µs hold-off time one can clearly see the ringing effect

of detector count rate in the peak area while the ringing disappears in the case of 0.6 µs hold-off

time.

In order to illustrate the ringing effect, we develop a MATLAB program to simulate the

detector count rate of free-running InGaAs/InP SPD with different settings of hold-off time. The

input intensity is assumed to be a step signal from 0 to 107 photons with a rising time of 2 µs,

which are close to the values in the field experiment. Given a setting of 2 µs hold-off time, the

ringing effect distinctly appears, as shown in Fig. 3(c), from which one can conclude that such
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Fig. 4. Experimental setup for characterizing the free-running InGaAs/InP SPD. PG: pulse

generator; LD: laser diode; PM: power meter; ATT: attenuator; TDC: time-to-digital con-

verter.

effect highly relies on the input photon flux and the hold-off time setting of SPD. Further, let us

define the maximum count rate as Ro and the stable count rate as Rs, the relationship between

Rs and the input intensity is given by

Iη =
Rs

1 − Rsτ
− DCR. (1)

where η is the detection efficiency, τ is the hold-off time, and I is the input photon flux. The

maximum relative overshoot error is calculated as

Erros =
Ro − Rs

Rs

. (2)

Figure 3(d) plots Erros as a function of hold-off time, which indicates that such overshoot error

exponentially increases with the increase of τ. Therefore, for lidar applications using InGaAs/InP

SPD the hold-off time has to be chosen as small as possible to avoid the count rate ringing. In

our experiment, the hold-off time is set as 0.6 µs, corresponding to a MCR of ∼1.6 Mcps, to

guarantee that the maximum relative overshoot error is less than 1.5%.

We then calibrate the key parameters of the free-running InGaAs/InP SPD with 0.6 µs hold-off

time including PDE, DCR, and afterpulse probability distribution. The setup for calibration is

shown in Fig. 4. A laser diode (LD, picoquant PDL 800-D) is driven by a pulse generator (PG)

with a frequency of 20 kHz that is the same as the PRF of our lidar system. The laser pulses are

split by a beam splitter (BS). One output port of the BS is monitored by a power meter (PM, Exfo

IQS-1600), and the other one is connected with a precise attenuator (ATT) to further attenuate

the intensity down to single-photon level. The detector outputs are recorded by a time-to-digital

converter (TDC, picoquant PicoHarp300), which is triggered by synchronized signals from the

PG.

For DCR measurement, the LD is switched off. Given a count rate R, the inherent dark count

rate r is calculated as

rd =
R

1 − Rτ
. (3)

When the LD is switched on, the peak photon count rate S1 and total count rate S2 are recorded,

respectively. Then PDE is calculated as

PDE = −
1

µ
ln(1 −

S1

f
), (4)

where µ is the mean photon number per pulse, f is the frequency of laser pulses. The distribution

of afterpulse counts can be obtained from the TDC, and the total afterpulse probability over the

whole 50 µs period is evaluated by

Pap =
S2 − S1 − rd(1 − S2τ)

S1

. (5)



Table 1. The calibration results of dark count rate and afterpulse probability at different

temperatures (T) with 10% PDE.

T (K) DCR (cps) Pap (%)

243 6743 13.2

223 952 18.0
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Fig. 5. Experimental result (square symbol) and fitted curve (line) of afterpulse probability

distribution with 10% PDE and 0.6 µs hold-off time at 223 K.

Table 1 shows the calibration results of DCR and afterpulse probability with 10% PDE at

three typical temperatures with hold-off time of 0.6 µs. At low temperatures, the SPD exhibits

low DCR performance but high afterpulse probability. Therefore, these two parameters have to

be compromised for lidar applications. In the lidar experiment, the temperature of the SPD is set

as 223 K with performance of 10% PDE, 950 cps DCR and 18% afterpulse probability. Such

performance is moderately better than the commercial product of free-running InGaAs/InP SPD

(ID220-FR-SMF, IDQ), which has 1 kcps DCR and 10% PDE with hold-off time of 10 µs [39].

The afterpulse probability distribution of our free-running SPD is further measured using the

TDC, as shown in Fig. 5. This distribution is fitted by the following formula [33]

Pap(t) = A1E xp(−t/τ1) + A2E xp(−t/τ2) + A3E xp(−t/τ3) + c, (6)

where A1, τ1, A2, τ2, A3, τ3, c are fitting parameters. Acquiring such distribution is useful for

afterpulse correction in the lidar experiment.

5. Afterpulse and count rate corrections for lidar experiment

In order to apply our free-running InGaAs/InP SPD to practical lidar system, we develop a

specific algorithm for afterpulse and count rate corrections, after which the lidar performance

has been significantly improved. The flow diagram of the correction algorithm is described in

Fig. 6. Given a measured afterpulse probability distribution Pap(i) and backscattering signal

count rate distribution R(i), the afterpulse count rate Rap in bin j is

Rap( j) =
∑

i

A(i, j), (7)

where A(i, j) represents the afterpulse count rate probability in bin j due to a detection click in

bin i. A(i, j) can be calculated as

A(i, j) = R(i)Pnc(i, j)Pnap(i, j)Pap( j; i), (8)



Eqn.(7) Eqn.(11) Eqn.(12)

R(i)

Pap(i)

Rap(i) R1(i) R2(i)

Fig. 6. Flow diagram of the correction algorithm. R(i), Pap(i) represent the measured

detector count rate, afterpulse probability in bin i, respectively. Rap(i), R1(i) and R2(i)

represent the calculated afterpulse count rate, count rate with afterpulse correction, and

count rate with both corrections in in bin i, respectively.

where Pnc(i, j) represents the probability that no photon count occurs between bin i and bin

j, Pnap(i, j) represents the probability that no afterpulse occurs between bin i and bin j, and

Pap( j; i) represents the probability that a photon count in bin i results in an afterpulse count in

bin j. Pnc(i, j) and Pnap(i, j) are further calculated by

Pnc(i, j) = E xp[−

j∑

k=i

R(k)binw], (9)

Pnap(i, j) = E xp[−

j−i−1∑

k=0

Pap(k)], (10)

where binw is the duration time of a bin. Therefore, the count rate in bin i without the afterpulsing

contribution is given by

R1(i) = R(i) − Rap(i), (11)

and further considering the limit of hold-off time the corrected photon count rate in bin i is

R2(i) =
R1(i)

1 − R(i)τ
− DCR(i). (12)

In the field lidar experiment, the measured results of detector count rate and range-corrected

signal (normalized Pr2) versus range using both SNSPD and InGaAs/InP NFAD are shown in

Figs. 7(a) and 7(b), respectively. After correcting the results using InGaAs/InP NFAD by the

afterpulse and count rate correction algorithm, one can find out that the lidar performances in

terms of normalized Pr2 versus range in two cases of using SNSPD and InGaAs/InP NFAD

with the corrections agree very well with each other, which clearly shows the usefulness of the

correction algorithm. Further, we use the normalized Pr2 results using SNSPD as a reference

and calculate the relative error of the results using InGaAs/InP NFAD, as shown in Fig. 7(c). In

the case without correction, the relative error between the two scenarios increases and then is

stable at around 30% with the increase of range. However, with correction such relative error is

drastically decreased down to a pretty low level. For instance, in the range between 1 km to 3 km,

the maximum error is only 2.2% while the average error is 1.3%. The large errors in the range

close to the limit, i.e., ∼6 km, are due to the fact that detector count rate significantly decreases

in that range and thus the calculation of relative errors is not accurate because of statistical

fluctuations. Due to the geometrical overlap factor in the biaxial lidar, the raw signal increases

rapidly from zero to maximum in the near range. Since the scaler receives raw signals from two

detectors, a slight delay between two channels results in very large errors due to the steep slopes

in the very near range, i.e., < 0.5 km. In practice, the results of normalized Pr2 in very near range

are not used. Such comparison indicates that for lidar applications our free-running InGaAs/InP

SPD is completely comparable to SNSPD with the help of afterpulse and count rate corrections.
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Fig. 7. The detector count rate (a) and normalized Pr2 (b) as a function of range in the

field lidar experiment using SNSPD (green lines), and InGaAs/InP NFAD (red circle sym-

bols), respectively. The results using InGaAs/InP NFAD are further corrected (blue square

symbols) by the afterpulse and count rate correction algorithm. (c) Given the measured

results using SNSPD as a reference, the relative error of normalized Pr2 as a function of

range using InGaAs/InP NFAD without (red circle symbols) and with (blue square symbols)

correction.

6. Conclusion

In conclusion, we have presented a fully integrated free-running SPD based on an InGaAs/InP

NFAD for 1.5 µm Mie lidar system. We have optimized the key parameters of InGaAs/InP

SPD and investigated the ringing effect of backscattering signal for lidar applications. After

afterpulse and count rate corrections, the field lidar performance in terms of normalized Pr2

versus range using the free-running InGaAs/InP SPD is considerably comparable to that of using

a commercial SNSPD, with only ∼2% relative error. Our technique provides a practical solution

for single-photon detection dedicated to accurate lidar applications.
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