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Motivation for single photon detectors

Examples of photon counting applications for λ > 1.0 – 1.6 μm:

Communications
• Secure communications (e.g., quantum key distribution)

• Free space optical communication in photon-starved applications

Remote sensing
• 3-D Imaging

• Lidar / atmospheric sensing

Industrial and Biomedical
• Semiconductor diagnostics

• Single photon fluorescence (e.g., quantum dot markers)
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Presentation outline

Overview of InP-based single photon avalanche diodes (SPADs)

Dark count rate vs. detection efficiency

Afterpulsing effects (and impact on photon counting rate)
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InGaAsP/InP avalanche diode design platform

Separate Absorption, Charge, and Multiplication (SACM) structure
• High E-field in multiplication region → induce avalanching 
• Low E-field in absorption region → suppress tunneling

Planar passivated, dopant diffused device structure
• Stable and reliable buried p-n junction
• Widespread deployment of device platform in telecom Rx
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APD Current-Voltage Characteristics

Linear mode performance is behavior below breakdown voltage Vb

• Output photocurrent below Vb is linearly proportional to input optical power

“Linear” gain

Breakdown 
voltage Vb
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Performance uniformity at wafer level

Breakdown voltage is very sensitive to structural details
• Provides good measure for consistency of many device attributes
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Geiger mode operation

Single photon avalanche diodes (SPADs) operate in “Geiger mode”
• Bias above breakdown voltage Vb by overbias ΔV

• Single photon induces avalanche leading to macroscopic current pulse
– Avalanche detected using threshold detection circuit

• Used as a photon-activated switch with purely digital output

• Avalanche must be quenched after detection by lowering bias below Vb
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Presentation outline

Overview of InP-based single photon avalanche diodes (SPADs)

Dark count rate vs. detection efficiency

Afterpulsing effects (and impact on photon counting rate)
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DCR vs. DE trade-off

Most important SPAD performance tradeoff:  DCR vs. DE
Typical performance:  10 kHz DCR at 20% DE, 100 kHz at 40% DE
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Dark count rate behavior and mechanisms

Simulations give insight into dominant DCR mechanisms
• following formalism of Donnelly et al.  [JQE 42, p. 797 (2006)]

Dark carriers can be generated by a number of mechanisms

Sample properties will have a large impact on DCR
• Bandgap (InP vs. InGaAs vs. InGaAsP)
• Defects

Study DCR dependence on temperature and voltage bias for clues
• Extract activation energies to help identify dominant DCR mechanisms

Other “combined” 
processes not 
considered
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DCR vs DE modeling for 1.5 μm SPADs

Modeling provides reasonable fit to DCR vs DE behavior

• gated-mode operation
• 1 ns gate width
• 500 kHz repetition rate
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Dominant DCR mechanisms from modeling

Two dominant DCR mechanisms for 1.5 μm SPADs at 213 K
• Trap-assisted tunneling (TAT) in InP multiplication region
• Thermal generation-recombination (G-R) in InGaAs absorber

TAT and G-R compete at low overbias (e.g., Vov < 3 V)
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DCR vs. DE trade-off in 1.06 μm SPADs

Use InGaAsP absorber in structure similar to 1.5 μm SPADs 
• Thermal G-R significantly reduced with wider bandgap InGaAsP 

DCR approaching Si SPAD DCR with greatly increased PDE
• Si SPADs have PDE < 2% at 1.06 μm 

• 1.06 μm SPAD
• gated-mode operation
• 1 ns gate width
• 500 kHz repetition rate
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DCR mechanisms for 1.06 μm SPADs

At low temp, multiplication region trap-assisted tunneling dominates
• Thermal generation in absorber is inconsequential due to larger InGaAsP bandgap

At room temp, two mechanisms compete
• Similar to 1.5 μm SPADs at low temp (213 K)
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Confirm DCR mechanisms by studying Ea

Characterize DCR vs. temperature at different overbias for T < 220 K
• Assume  DCR ~ exp(-Ea/kT)  to extract activation energy Ea
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Dark count rate behavior and mechanisms

DCR vs. temperature at different overbias for T > 200 K
• Can not fit with fixed Ea for T ≳ 220 K 
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Dark count rate behavior and mechanisms

Consider T dependence of DCR activation energy Ea(T)
Variation of Ea with T is consistent with DCR modeling results
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TAT defects in DCR modeling

G-R can be reduced by lower temperature operation 

TAT contribution is more fundamental
• Very sensitive to defect location in InP bandgap
• Linear dependence on defect concentration

Modeling for 1.55 and 1.06 μm used same TAT defect location of 0.78Eg
• Good consistency with MIT/LL modeling results for 1.06 μm (0.75Eg)
• Some consistency with highly varied older literature on native defects in InP

– Possible origin with P vacancies in InP lattice [Verghese et al., JSTQE 13, 870 (2007)]

Simulations very sensitive to defect attributes
Need appropriate materials analysis (e.g., DLTS/capacitive spectroscopy)
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Presentation outline

Overview of InP-based single photon avalanche diodes (SPADs)

Dark count rate vs. detection efficiency

Afterpulsing effects (and impact on photon counting rate)
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Description of afterpulsing

Afterpulsing is most serious limitation of InP SPADs; limits repetition rate
Avalanche carriers temporarily trapped at defects in InP multiplication region 

Carrier de-trapping at later times can initiate “afterpulse” avalanches
• Afterpulsing likely if “hold-off” times Th-o ≲ detrapping time τd

afterpulses
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Afterpulse probability: short gate measurement

Assess afterpulsing using short (1 ns) gates as function of repetition rate
• Repetition rate varied from 0.5 MHz to 10 MHz
• Photon arrival staggered to coincide with only “odd” gate pulses
• Afterpulsing indicated by increased dark count rates in “even” pulses

5 MHz repetition rate maintains acceptable afterpulse probability

• 40 μm dia. SPADs
• gated operation
• 1 ns gates
• 212 K
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Impact of afterpulsing on dark count rates

Assess impact of afterpulsing through DCR dependence on hold-off time
• Looking at afterpulses induced by dark counts only
• Sharp rise in DCR at short Th-o due to afterpulsing

Biasing scheme

• 40 μm diameter SPADs
• 20 ns gated quenching
• 6 V overbias
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Temperature dependence of afterpulsing

Normalize to background DCR → shows modest effect of temperature
DCR vs. Th-o curves collapse to a single curve with correct rescaling

• Same curve shape up to temperature-dependent scale factor for Th-o

Collapse allows extraction of afterpulsing activation energy
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Afterpulsing activation energy Ea,AP

Use DCR vs Th-o curve collapse to find afterpulse activation energy
• Assuming single detrapping time τd , inverse of scale factor ∝ τd
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Impact of gate length on afterpulsing

Assess afterpulsing vs gate length using DCR vs Th-o data
Simulation provides qualitative agreement with measured data
• Assumes single detrapping time τd following Kang et al. [APL 83, 2955 (2003)]

Smaller current flow at shorter gates → greatly reduced afterpulsing
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Impact of overbias on afterpulsing

Low overbias reduces afterpulsing relative to high overbias 
• 6 V overbias:  very large DCR increase (> 100X) at Th-o = 4 μs
• 2 V overbias:  very small DCR increase (~ 2X) at Th-o = 4 μs
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Other issues related to afterpulsing

Single trap vs. multiple traps:  fundamental question for modeling
• Multiple traps:  too many free parameters, or correct physics?

De-trapping times found will depend on hold-off times Th-o used
• For narrow range of Th-o, see just one de-trapping time from RAP(t)
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Survey of afterpulsing de-trapping times

Afterpulsing literature suggests multiple traps

• De-trapping times identified over 4 orders of magnitude

• But are these de-trapping times physically meaningful?

τ1 τ2 τ3 τ4 

PLI/NASA 250 0.14  – 0.46 0.07 free-running

MIT/LL 250 1.0 – 10 0.9 double-pulse

Univ. Virginia 220 – 240 0.02 – 50 0.15 1.0 5 45 double-pulse

MagiQ 195 – 230 1.25  – 100 0.5 6 100 double-pulse

PLI/POLIMO 200 – 220 4 – 1000  ~15 ~150 DCR vs. Th-o scaling

Technique
Detrapping times [μs]

Source Temperature 
[K]

Hold-off time 
[μs]
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Conclusions

Present DCR vs. DE performance
• 1.5 μm:  ~10 kHz at 20% DE, T ~ 215 K, 25 μm dia.
• 1.06 μm:  ~1 kHz at 30% DE, T ~ 235 K, 80 μm dia.

DCR vs DE modeling provides good fit to experimental data
• Illustrates trade-off between trap-assisted tunneling (TAT) and thermal generation
• Activation energy studies confirm dominant mechanisms
• Consensus forming around principal TAT defects

Different approaches to afterpulse mitigation for higher repetition rate
• Reduce initial carrier trapping → mostly a materials problem

– Increased operating temperature provides only modest impact on afterpulsing
• Reduce avalanche charge flow → operating conditions and design

– Lower overbias voltage (more quantitative analysis needed)
– Reduced overbias duration using shorter gates or faster quenching
– Substantial opportunity for circuit design


